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Red blood cell dynamics: from spontaneous fluctuations to non-linear response
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We studied experimentally the mechanical properties of the red blood cell. By attaching beads

biochemically on the cell membrane at diametrically opposite positions, the membrane movements can be

detected very accurately, and a deformation of the cell can be imposed. A measurement of the mechanical

properties at very small amplitudes is obtained by fluctuation analysis, and compared to the stiffness at

larger deformations, obtained by stretching the cells via optical traps whilst monitoring the force. The

cells are also probed at various conditions of pre-strain. These measurements show clearly a stiffening

with strain and with pre-strain, which is strongest at low frequencies of deformation. The cell is measured

to be slightly softer from fluctuation analysis, but consistent simply with the fact that the oscillation

amplitude in fluctuations is very small. There is no evidence in these experiments of non-thermal sources

of membrane motion, although non-thermal noise may be present within experimental error.
1 Introduction

From the mechanical point of view, biological cells are very

complex materials with highly unusual dynamical response

properties: they usually exhibit viscoelasticity and are often non-

linear, as well as displaying non-thermal active responses.1 These

properties stem from the architecture of the cytoskeleton:

a network of semiflexible protein filaments, crosslinked by both

passive and active (motors) protein groups. The result is an

effective stiffness which depends sensitively on the applied stress,

deformation protocol and environmental conditions.2 The fila-

ments present in most cell types are F-actin, intermediate fila-

ments and microtubules: generally they confer rigidity to cells,

and to tissues at larger scales.3,4 The red blood cell (RBC, or

erythrocyte) is a biological structure of relative simplicity and

exceptional softness. It can be broadly described as a bilayer

membrane, coupled to a thin and tenuous cortical cytoskeleton

composed of spectrin filaments (in most mammals).3 Coupling

is maintained via complexes of a few different proteins (ankyrin,

band 3 and band 4.1). In mammals, the red blood cells lack

a nucleus and intra-membrane organelles.5 The outer

membrane, held under tension by the cortical cytoskeleton,

encloses a dense solution of haemoglobin. Transport of oxygen

is the key physiological role of this cell, and this is crucially

linked to its ability to deform and flow through small spaces in

the lungs and peripheral circulatory system. The mechanics of

individual cells is strongly coupled to the rheology of whole

blood.6 Despite the simplicity of the cellular architecture and
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the high deformability, the mechanics of this cell shares some

features of interest with more complex cells, including non-

linearity7 and possibly non-thermal dynamics.8 The RBC has

been and continues to serve as a useful model system to

understand general aspects of cell mechanics.9

The response of cells to external stresses is a topic of current

interest. Suspended cells have been shown to respond non trivi-

ally to applied forces.10 Adherent cells tend to develop tension

spontaneously on a substrate, and they respond to extracellular

elasticity.11,12 This implies effects at various systemic levels in the

cell, from gene regulation up to the purely physical response of

the cytoskeleton. Forces are a key factor in development.13,14

Mechanical probing has been performed with different tech-

niques on different types of eukaryotic cells, and in most cases

tends to show a broad spectrum of relaxation times.15,16 The

simple architecture of the RBC is useful in this context, acting as

a model in which the cytoskeleton and the membrane are the only

structural elements that need to be considered. Another way to

address the role of the cytoskeleton is to work with in vitro

reconstituted systems. It has been shown that externally imposed

forces (pre-stresses) influence strongly the mechanical properties

of reconstituted cytoskeletal networks: the applied stress stiffens

the cytoskeletal network, bringing the response into a non-linear

regime.17,18 Despite the importance of cell dynamics, the

mechanical properties of the whole cell are less well understood

than in vitro systems. There is still debate on the origin of

nonlinearity in response to deformation.19–22 For the ‘‘simple’’

RBC, while the question of cell shape23 is relatively well under-

stood, there are key open questions on the presence of non-

thermal (ATP-driven) shape fluctuations (seen in ref. 8,24 but

absent in ref. 25), and on how to include in a cell mechanical

model the molecular changes induced in the cell by deforma-

tion.5,26 Actin-coated vesicles have been studied both
This journal is ª The Royal Society of Chemistry 2011
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experimentally27,28 and theoretically29 as architectural analogs of

cells with a cortical cytoskeleton.

Microrheology is a general method by which the motion of

microscopic tracer particles embedded in a material,30 or the

motion of components of the system itself,31,32 is analysed

obtaining mechanical and rheological properties of the material.

Single particle microrheology has been applied also to spatially

heterogeneous conditions, such as a bead attached to

a membrane.27,28 If pairs of beads are embedded in a homoge-

neous medium, then two-point microrheology, based on

measuring the cross-correlated thermal motion of pairs of tracer

particles, can be used to overcome some important limitations of

single-particle microrheology: the dependence on the size or

shape of the tracer particle, and the coupling between the tracer

and the medium.33 However in the case of particles attached to

a single cell suspended in a liquid medium, as in ref. 10 and in the

present work, extracting the cell mechanics is not so straight-

forward and the geometry of the system needs to be considered

carefully, since forces can be transmitted both through the cell

and through the surrounding liquid. The power of this technique

is that two complementary measurements of the system’s

response are possible: by observing the intrinsic (thermal or

otherwise) motion of the attached beads (‘‘passive’’), or by

moving the beads and stretching the cell (‘‘active’’). If the cell has

non-thermal sources of noise, there can be a key difference in the

measured mechanical response between the active and passive

experiments. The additional non-thermal noise would lead to an

apparent softening of the material in the passive measurement. In

recent work, this type of comparison of active and passive

response functions has been used to highlight non-thermal

processes in cells.10

In this work, using two particles held in optical traps to deform

the RBC, the mean force and the particle fluctuations are

measured. This allows us to explore a previously unchartered

area of RBC mechanics in terms of the effects of pre-stress and

the range of strain amplitude. Various protocols are compared:

passive and active displacements; stress-strain versus stress

relaxation experiments. We show clearly the onset of stiffening

(i.e. non-linearity), already at very small strain. There is no

evidence of non-thermal motion in the range of 1.6 < u (rad s�1)

< 32, within the precision of our data. The question of non-

thermal activity at lower frequencies remains open.
Fig. 1 Red blood cells can be stretched using optically trapped colloidal

beads as handles. A schematic diagram of the stretching arrangement is

shown in (a), where a cross marks the positions of the laser trap and a dot

marks the center of the bead. The bead position is obtained via image

analysis. The optical image is recorded onto a fast CMOS camera, typical

snapshots with the RBC at rest and in a stretched state are shown in (b),

where the beads are 5 mm in diameter. Fluctuations of each bead are

labeled as (xi,yi) with i¼ 1,2, and are measured relative to the equilibrium

position of the bead. For a cell held at its rest length, the bead equilibrium

position corresponds to the laser trap position. Scale bar is 10 mm.
2 Materials and methods

RBCs are obtained by drawing �100 ml of blood from one

healthy donor by a fingertip needle prick. The blood is diluted in

phosphate-buffered saline (PBS) with acid citrate dextrose and 1

mg ml�1 bovine serum albumin (BSA) at pH7.4 (reagents all from

Sigma-Aldrich). To isolate the RBCs, the suspension is washed

three times by centrifugation. The final buffer consists of 1 mg

ml�1 BSA in PBS solution. The optical tweezers setup consists of

a laser (l ¼ 1064 nm, Pmax ¼ 1.1 W) focused through a water

immersion objective (Zeiss, Achroplan IR 63x/0.90 W) trapping

from below. Technical details have been reported previously.7 In

brief, the laser beam is steered via a pair of acousto-optic

deflectors allowing multiple trap generation with sub nanometre

position resolution. A new laser position can be updated every 50

ms. In this work the trapping stiffness on each of two beads is
This journal is ª The Royal Society of Chemistry 2011
either kept very low at ktrap ¼ 3 pN mm�1 for experiments in

which beads are weakly trapped to enable measurement of fluc-

tuations, or much higher at ktrap ¼ 44pN mm�1 to enable the

largest possible cell stretching. The video is recorded with a fast

CMOS camera (Allied Vision Tech., Marlin F-131B) at up to 1

kHz frame rate and with 0.1 ms exposure time. Experiments are

carried out in a temperature controlled room (T x 23 �C) but the

local temperature in the sample is T x 30 �C as established by

measuring the buffer viscosity through the Brownian motion of

trapped beads, a local heating consistent with ref. 34.

Carboxylated silica beads of radius R ¼ 2.5 mm (Bangs Labs)

are functionalized for attachment to the RBC by coating with

Lectin and EDC (Sigma), following Bangs Labs technote 205.

Using the tweezers, two beads are attached uniaxially on the

equatorial plane of an RBC, at opposite ends, see Fig. 1. The

construct is then floated away from the bottom glass slide surface

(up to about 10 times the bead diameter). In this way the

hydrodynamic drag from the solid glass surface is minimal. The
Soft Matter, 2011, 7, 2042–2051 | 2043

http://dx.doi.org/10.1039/c0sm01117g


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
28

 M
ar

ch
 2

01
1

Pu
bl

is
he

d 
on

 2
2 

D
ec

em
be

r 
20

10
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
01

11
7G

View Online
area of contact between the bead and the cell is estimated to be in

the range 3–4.5 mm2 from the microscopy images, and no

significant correlation of the patch area with any of the experi-

mental results was observed. The cells are quite monodisperse in

size, with an initial cell length (the diameter) L0 x 8mm. This is

the experimental arrangement first demonstrated in the work of

ref. 35.

The coordinates in the image plane of the two beads are

extracted via correlation filtering and a two-dimensional fitting,

and are precise to a resolution of around 5 nm. The displacement

of bead i from its average position (in fluctuation experiments) is

labeled as (xi(t),yi(t)), with i ¼ 1,2.

Three deformation protocols are explored in this work and

described below: measurement of membrane mechanics from

fluctuations; stiffness of the cell from stress versus strain data,

and the time-dependent stiffness measured in stress relaxation.

Greater detail is given on the fluctuation experiment, as the other

methods have been reported before.7
Fig. 2 (a) Power spectral density of the fluctuations of the inter-bead

distance dx. Different states of strain lead to a change of the amplitude

and shape of the spectrum: (P) cell at rest, (B) and (O) are the cell

stretched by 15% and 25% respectively. The spectra are fitted to a power

law in the frequency range indicated, to obtain the exponent g. The

power law exponents for these spectra and those of all measured cells

are plotted in panel (b). The (�) indicate the spectrum of dx for a pair of

5 mm diameter beads at the same distance (13 mm center to center) and

optical trap conditions as in the cell stretching experiments. These data

are fit with a generalized Lorentzian function in which the power of the

high frequency regime is free to fit. The value of 2 is obtained as

expected. The bandwidth of 1 Hz is used for the power spectral density

as it is the common unit for this quantity, but note that the spectrum is

plotted as a function of the angular frequency u used throughout this

paper. (b) The effect of strain on the power law exponents g, for

experiments at different states of cell strain. The value of g decreases

with strain: there are various interpretations of this as discussed in the

text.
2.1 Fluctuations

2.1.1 Power spectra. The fluctuations of the trapped beads

attached to the red blood cell are measured via image analysis.

Bead motion can originate from either thermal noise alone, or

from a combination of thermal and active processes in the cell:

this is an open question. Fluctuations are recorded for the cell at

rest length L0 (un-stretched) and at two increasing degrees of

stretching. These fluctuations are analyzed via the framework of

microrheology,29,10 to extract the cell stiffness (elastic and dissi-

pative components).

The bead positions are recorded for 1 min. We focus here on

the dynamics in the axial x-direction, and calculate various

functions: the autocorrelation of each bead in time Ci(t
0) ¼

hxi(t)xi(t + t0)it, the autocorrelation of the relative fluctuations

between beads (these are the fluctuations of cell length) Cd(t0) ¼
h(x2(t) � x1(t))(x2(t � t0) � x1(t � t0))it, the crosscorrelation

function Cij(t
0) ¼ hxi(t)xj(t + t0)it, (i s j). To simplify notation,

dx(t) will be used for x2(t) � x1(t). From these functions, the

power spectra are obtained via a Fourier transform:

Pxi
ðuÞ ¼ F :T :½Ciðt0Þ�;

PdxðuÞ ¼ F :T :½Cdðt0Þ�;
PcrossðuÞ ¼ F :T :

�
Cijðt0Þ

�
; ðisjÞ:

(1)

In Fig. 2, spectra of Pdx(u) are shown for different experi-

mental conditions. The data is taken from a video at frame rate

470 Hz, and is 63 s long. The lowest angular frequency in the

dataset is 0.1 rad s�1 and the Nyquist frequency is 1500 rad s�1.

Data is shown from one decade above the minimum (so that

some averaging is possible to reduce noise) up to 2/3 of the

Nyquist frequency. The fitting range 70 to 700 (rad s�1) in

the spectrum has been chosen to start from after the roll-off in

the spectrum, and terminate at half the Nyquist frequency.

The autocorrelation function of the displacements of a single

thermally excited bead trapped in a harmonic potential with

stiffness ktrap (in the absence of a cell or other beads) is an

exponential decay with timescale s ¼ gdrag/ktrap, where gdrag ¼
6phR is the hydrodynamic drag coefficient of the bead, in

a solvent of viscosity h. Then the power spectrum is well known

to be the Lorentzian:
2044 | Soft Matter, 2011, 7, 2042–2051
Pxi
ðuÞ ¼ 2kBT

gdragðu2
c þ u2Þ; (2)

where uc is known as the corner (angular) frequency and is

related to the stiffness and friction: uc ¼ ktrap/gdrag. kB is the

Boltzmann constant and T is the absolute temperature. The

square decay of the spectrum for high frequency is characteristic

of dissipation in a Newtonian medium. With two beads at

a distance d from each other in a liquid, there are hydrodynamic

interactions that decay as 1/d, as first calculated by Oseen;36 the

spectrum of fluctuation of each bead is modified as shown by

Meiners and Quake.37 In this scenario, the normal modes of the

2-bead system are the relative and the average motions. A simple

Lorentzian form describes in particular the power spectrum for

relative motion, Pdx(u). This has the form of eqn (2) but the
This journal is ª The Royal Society of Chemistry 2011
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corner frequency is reduced to ~uc ¼ uc3R/(2d), reflecting the

increased drag arising from interactions.

In the presence of a cell held between the beads, there is

potentially a stronger coupling between the beads, and it may

have an elastic as well as a viscous character. If the cell does not

occupy a major fraction of the space between the beads, then also

some hydrodynamic coupling through the surrounding fluid can

still be felt. Because of the heterogeneous geometry around the

bead, this scenario is more complex compared to standard

microrheology where beads are embedded in a homogeneous

material.38 In the homogeneous case, it is possible to rigorously

determine the material elastic shear properties, extending the

Oseen interaction term to account for viscoelasticity.38 Then, in

case of externally trapped particles, it is also possible to take into

account the contribution to fluctuations from the optical trap

potential, and recover the material properties.39 For the more

complex (heterogeneous) system in which a cell is present in-

between the two beads, it is necessary to make approximations.

The way we have proceeded is to use the formalism of ref. 39 to

calculate the system susceptibility, to remove the contribution of

the trap potentials, and to obtain an effective stiffness that

describes the interaction between the beads. This stiffness will

contain the whole interaction, through the cell and the

surrounding liquid.

The spectrum Pdx(u) can be expected to remain frequency

independent for low enough frequencies, and to crossover to

a u�2 decay at sufficiently high frequencies. However in the

intermediate frequency range, the spectrum can exhibit in prin-

ciple any intermediate decay rate, reflecting the existence of

additional dissipative processes. Finally, the amplitude of Pdx(0)

in the presence of a cell need not remain the same as without the

cell, since the cell itself can contribute a zero-frequency finite

elastic response component.

Systematic effects due to the camera exposure (i.e. integration)

time and finite frame rate have to be considered. For spectra that

decay with a single power of the frequency, P�u�g for u [ uc,

these factors can be addressed by the technique explained in ref. 40,

allowing an analysis up to frequencies close to the Nyquist limit

uNy. Having considered these effects, it was concluded that with

the experimental parameters in this work there is no observable

contribution from this effect to the data below uNy/2, and only this

data was used. Calibration data in the absence of a cell show in

Fig. 2 a good agreement to a generalized-Lorentzian spectrum

where the decay exponent g is a free parameter, obtaining g ¼
+2.00 � 0.02 consistent with the Lorentzian form of eqn (2).
2.1.2 Obtaining cell stiffness from the power spectra. The

method follows closely ref. 39, except for the last steps where the

stiffness is considered here rather than the shear modulus.

Briefly, the susceptibilities for single and cross-correlated fluc-

tuations are calculated via:

c
00
xi
ðuÞ ¼ u

2kBT
Pxi
ðuÞ

c00
cross
ðuÞ ¼ u

2kBT
PcrossðuÞ;

(3)

which are expressions of the fluctuation-dissipation theorem.

Then the real part of the susceptibility for single and cross cases is

obtained through a Kramers–Kronig integral:
This journal is ª The Royal Society of Chemistry 2011
c0ðuÞ ¼ 2

p
P

ðN

0

z

z2 � u2
c
00ðzÞdz: (4)

Physically, this is a consequence of causality. In ref. 39 it is

shown how to compute this principal value integral via sine and

cosine transforms (the real data is discrete, so these integral

transforms are in practice discrete series), whereas we found it

more convenient to use the Hilbert transform which is a pre-

coded function in Matlab. Taking the Hilbert transform of an

antisymmetric function built by ‘‘folding’’ c0 0(u), and then taking

one branch of the real component, gives c0(u) equivalently to the

integral of eqn (4). These susceptibilities contain not just the

response of the beads to the cell+liquid system, but also still

include the trapping potential.

Again following ref. 39, the trap effects can be removed to

obtain the susceptibility for inter-particle response due purely to

the cell+liquid system:

a *
crossðuÞ ¼

c*
cross

1� ktrapc*
x1
� ktrapc*

x2
� k2

trapc* 2
cross þ k2

trapc�x1
c*

x2

:

(5)

Here the c* ¼ c0 + c0 0 are complex quantities. This step simply

requires the assumption of force/displacement linearity, which is

expected to be valid for spontaneous fluctuations. The effective

stiffness of the system can be defined as:

K*ðuÞ ¼ 1

a*
crossðuÞ

: (6)

For completeness, we remind the reader that if the material were

homogeneous then the shear modulus could be derived from:

G*ðuÞ ¼ 1

4pda*
crossðuÞ

: (7)

The procedure outlined here has been verified on data of pairs

of colloids in water, with R ¼ 2.5 mm and center-to-center

distances of d ¼ 13 mm as in the RBC experiments, and also with

numerically generated data exploring parameter space (including

hydrodynamic interaction via the method of Ermac and

McCammon,41 as in ref. 42). Treating this data, for which all the

functions (C(t), P(u), c(u), a(u), G(u)) are known analytically,37

allows one to verify separately the effects of finite frame rate and

finite experiment length, which introduce artifacts at high and

low frequency respectively. The results are reported here for

K*(u) in the frequency range where these effects can be neglected.
2.2 Stress relaxation

One laser is displaced rapidly to a new position; the cell is

therefore also stretched rapidly. The force right after the

displacement is higher than the equilibrium value, and the force

relaxation is measured as a function of time. Different ampli-

tudes of strain are tested. The case in which the cells are initially

at rest length is compared to a pre-stretched condition.
2.3 Stress versus strain

Moving the beads with the optical traps, the force on the bead is

measured versus cell elongation. This is done for small-amplitude

strains starting with the cell at the rest length L0, and for small
Soft Matter, 2011, 7, 2042–2051 | 2045
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amplitude strains on top of a pre-stress (obtaining a ‘‘differential

modulus’’ as in ref. 22). Different pulling rates are explored, and

a comparison is also made with larger amplitude deformation.

The force versus the cell elongation data is fit to a linear function,

the gradient of which is the cell stiffness K.
3 Results and discussion

3.1 Fluctuations

3.1.1 Passive spectrum. Previous experiments27,28 have

considered the motion of a single bead attached to an actin-

filament coated vesicle. The current setup is similar, with the cell

being held by ‘‘soft’’ potentials on either side. If the trapping

potentials are equal, looking at the spectrum of a single bead is

not ideal: the normal modes are given by the difference and the

average of the bead positions. We focus first on Pdx(u) for

comparison to ref. 27,28. The membrane exerts a force on the

attached beads, modifying the power exponent g to a value less

than 2. This can arise from both a bending energy and the in-

plane viscoelasticity of the cell membrane.

The power exponent g is obtained by fitting the 70 < u (rad

s�1) < 700 region of the power spectrum of Pdx(u), as shown in

Fig. 2. The average over all 15 independently measured cells is

reported in Fig. 2(b), for cells at rest and stretched to various

degree. The value of g falls from 1.46� 0.09 at rest to 1.24� 0.09

at 15% strain, and 1.11 � 0.06 at 25% strain. At much larger

frequencies than can be measured with the current setup,

a transition would be expected to a regime of u�2 decay.29 The

root mean square displacement (rms) for the dx of beads trapped

in water is 80.7 nm, and the rms of dx for beads attached to a cell

is 48.8 nm, 45.9 nm and 45.3 nm as the cell is elongated (these are

the values corresponding to the data in Fig. 2).

Membrane mechanics has been developed successfully starting

from the free energy framework set out by Helfrich.43 A similar

theoretical analysis has been applied to experiments on vesi-

cles44,45 and on RBC.25,46–48 Hydrodynamical aspects have been

considered for the case of an RBC by Brochard and Lennon,49

Peterson50 and more recently by Safran and Gov.51 The RBC out

of plane membrane fluctuations have previously been modelled

by two alternative approximations to the red blood cell shape;

either as a sphere,8 or as large planar membranes separated by

a small gap.52 In the high wavenumber limit, the spherical model

can be approximated as the fluctuations of an isolated planar

membrane. For this case, the membrane surface fluctuations can

be expressed in a particularly simple form:43

D
h2
~q

E
¼ 1

A

kBT

sq2 þ kq4
; (8)

where the function hq(t) is the Fourier transform of the fluctua-

tion amplitude h(x,y), defined as:

h~q ¼
1

A

ð
A

hðx; yÞexpð�i~q~xÞdxdy: (9)

Here the wave vector ~q is two-dimensional, and its modulus q is

given by q2 ¼ q2
x + q2

y, s is the tension on the membrane and k is

the bending modulus. To simplify notation, the vector sign in h~q
will be dropped in the following. A shear modulus or a confining

potential would appear as a q-independent term in the denominator
2046 | Soft Matter, 2011, 7, 2042–2051
of eqn (8), but it is clear experimentally that for an RBC this does

not influence the observable fluctuation modes.48 These membrane

fluctuation modes are also hydrodynamic modes, and thus each

mode has a single well defined relaxation timescale and a corre-

sponding crossover frequency uq in a Lorentzian spectrum.28 The

power spectrum of displacements of one point on the membrane is

given by a sum over all the dynamics at that point:

�
dh2ðuÞ

�
¼ 2

X
q

D
h2

q

E uq

u2
q þ u2

: (10)

The quantity hdh2(u)i is comparable, within factors of order

unity, to the power spectrum of bead fluctuations Pdx(u)

described before. In what follows, we maintain the notation

hdh2(u)i for the theoretical calculations of the membrane point-

displacement, and we focus on the dependence on u of this

quantity. The sum of eqn (10) can be approximated by an inte-

gral, and then calculated analytically in the limit cases that either

tension s or bending modulus k dominate the fluctuation spec-

trum of eqn (8). In these cases uq is a simple function. The

asymptotic behavior for the power spectrum for out-of-plane

height fluctuation on the membrane can be calculated as in (28) if

the tension is negligible, where uq ¼ kq3/(4h):

hdh2(u)i f k�1/3u�5/3 (for s x 0), (11)

And an analogous calculation in the opposite limit of large

tension, where uq ¼ sq/(4h) gives:

hdh2(u)i f s�1u�1(for k x 0). (12)

For high frequencies, and high wavenumber, the alternative

model of two planar membranes has the same behaviour as the

free membrane model above. This is because the distance over

which the hydrodynamic interaction acts decays with increasing

wavenumber. However, as discussed in,52 at intermediate

frequencies and wavevectors there is another set of modes, called

the peristaltic modes, for which the opposite faces of the RBC are

coupled hydrodynamically. These modes are relevant for RBCs

since the RBC thickness in the centre of the cell is comparable to

the wavelength of fluctuations which relax on typical experi-

mental timescales. The power spectrum of the peristaltic fluctu-

ations is calculated in ref. 52, and the limit cases are:

hdh2(u)i f k�2/3u�4/3(for s x 0), (13)

and:

hdh2(u)i f s�1u�1(for k x 0). (14)

In ref. 51, identical behaviour is obtained, but the calculation is

there based upon the interaction between the membrane and the

cytoskeleton, rather than between two membranes. In experi-

ments on free red blood cells, where tension can normally be

neglected, power spectra with exponents of �4/352,51 (analysing

data from ref. 53), and�5/38 have both been observed. In (8), the

flickering was observed up to kHz frequencies, whereas ref. 51,52

were limited by a maximum frequency of less than 100 Hz, so it is

not surprising that different behaviour has been observed.

Another difference lies in the geometry of the experiments. In ref.

8, observations were made of the flickering of the RBC equator,
This journal is ª The Royal Society of Chemistry 2011
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whereas ref. 52 focused on the height difference of the two

membranes, and ref. 51 on the absolute height of one membrane

above a surface. It remains unclear what behaviour one would

expect for the fluctuations of an RBC equator, when the flat

region at the centre is in the peristaltic regime, since this situation

is not described well by either approximation to the RBC shape.

For the model of membrane-cytoskeleton interactions,51 the

power spectrum on the equator should be similar to that in the

centre of the cell, whereas for the membrane-membrane inter-

action model,52 the equator could be in a free membrane regime

while the centre of the cell is undergoing peristaltic fluctuations.

The shape of the RBC is such that the equator is much further

away from contact with other parts of the membrane, compared

to membrane near the centre of the cell. In either case, one can

suppose that in the tensionless limit, the power spectrum of

fluctuations on the equator lies between �4/3 and �5/3.

However, ref. 25 has measured exponents as low as �0.9 for the

contour fluctuations of free RBCs in isotonic media.
3.1.2 Effect of membrane constraints. Further complications

arise when the RBC is connected to a perturbing force sensor,

such as beads in optical traps. This has two effects upon the

power spectrum. Firstly, the trap stiffness and the viscous drag

on the bead must both be included in the total stiffness of the

system, and secondly, the finite bead size prevents the high

wavevector fluctuations of the membrane to translate into bead

motion. The first effect is best seen by first calculating the

susceptibility of the free membrane, in the planar approximation.

This can be done following ref. 29,54:

cmembrane ¼
1

A

X
q

uq þ iu

4hqðu2
q þ u2Þ: (15)

In the limit where tension dominates, the real part of the

susceptibility diverges. What this means, physically, is that, in the

limit of zero curvature energy, an infinitely thin tether can be

pulled out with zero additional area, and at no extra energy cost.

From eqn (3), the real part of the susceptibility would not affect

the power spectrum of a free RBC. However, in the same limit,

the RBC stiffness vanishes, so that, when attached to trapped

beads, the stiffness of the system, and therefore, the power

spectrum, is entirely dominated by the trap stiffness and the

viscous response of the beads. The only effect of the membrane is

its purely hydrodynamic interaction with the beads, which an

effect not modelled here. The same divergence occurs when

tension dominates in the peristaltic models of ref. 52 and ref. 51.

It is a general effect whenever the exponent in the power spec-

trum approaches �1, for related models including confinement

terms due to the cytoskeleton, or the membrane viscosity.

However, the limit of qmax / N is unphysical. Even for a free

membrane, the fluctuations are cut off at the molecular length-

scale. For an attached membrane there is an earlier cutoff in

observable fluctuations, at the finite size of the bead attachment.

In ref. 29 a sharp cut off in wavenumber is imposed at the bead

radius. A refinement of that idea is to model the finite contact by

modifying the susceptibility in eqn (15) to:

cmembraneþpatch ¼
1

A

X
q

f ðqÞ
�
uq þ iu

�
4hqðu2

q þ u2Þ ; (16)
This journal is ª The Royal Society of Chemistry 2011
where f ðqÞz2p

rq
, for q.

2p

r
, and f(q) ¼ 1 otherwise. This expres-

sion is comparable to the susceptibility from bead fluctuations,

obtained in eqn (3) and 4, except that the bead hydrodynamic

interaction with the solvent and with the other bead is not

included in eqn (16). To justify eqn (16) briefly, the contact

between the bead and the membrane is modelled as a ring of

radius r. The Fourier transform of this ring contact is a Bessel

function of the first kind, which decays as a sinusoid multiplied

by q�½. The square of this Fourier transform gives the multi-

plicative factor f(q) z q�1. The crossover frequency is the same as

that described for the sharp cutoff in ref. 29, but the additional

factor of q�1 which arises here modifies the high frequency limit

of the single planar membrane power spectrum in both high

tension and low tension limits to:

dh2(u) f u�2 (for high frequency, with patch, planar case), (17)

recovering the scaling of Stokes damping of a bead in a trap.

Note however that the bead itself is not present in this model (i.e.

there is no bead drag) and therefore the prefactor of this spec-

trum is not comparable quantitatively to the experiment. In ref.

28 the crossover effect was measured experimentally as a func-

tion of bead size. Therefore, the exponents given in eqn (11) and

(12) are transient regimes which decay into the unbound bead

power spectrum. Because of the vanishing of the membrane

stiffness noted earlier, in the limit of low k, the u�1 regime is

found to be extremely short lived (less than one decade in

frequency), over a realistic range of patch sizes and membrane

parameters (s < 10�2 N m�1, k < 10�17 J, hint< 0.4 Pa s, r < 3 mm),

when the power spectrum is calculated for a spherical membrane

including bead interactions. However, in the case of the peri-

staltic model, performing the same analysis, and naively

including the multiplicative factor f(q) for the finite bead radius

in the relevant integrals for the power spectra found in ref. 52,

gives modified exponents:

hdh2(u)i f k�1/2u�3/2

(for s x 0, with patch, peristaltic modes), (18)

and:

hdh2(u)i f s�3/4u�5/4

(for k x 0, with patch, peristaltic modes), (19)

which can persist for longer than the current experimental

frequency range. These exponents agree with the exponents

found here for the unstretched and slightly stretched RBC power

spectra, where one would expect a cross-over from a bending

dominated to a tension dominated regime. However, the naive

translation of the peristaltic modes into fluctuation amplitudes

on the RBC equator, is not well justified, while the rigorous

calculation of power spectra for a real RBC shaped membrane

has not yet been achieved.

The interpretation of the exponent g may be furthermore

complicated by the possibility that, as in actin coated

membranes, the protein filament network of the RBC could play

a mechanical role, introducing another source of frequency

dependence.29 In this case, calculating a value of g becomes very

difficult. Complex protein networks may even contribute non-

thermal noise, if there are ATP-fueled rupture events.8 This latter
Soft Matter, 2011, 7, 2042–2051 | 2047
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possibility is explored here below, by comparing the cell response

measured from intrinsic motion and to that from active defor-

mation.

3.1.3 Stiffness of the cell from fluctuations. The stiffness

obtained from analysis of intrinsic motion is plotted in Fig. 3.

The real component K0(u) is practically frequency independent,

whereas the imaginary component K0 0(u) scales linearly with u.

Following this observation, the real part has been fitted to

measure the constant value of K0, which is reported in Fig. 6 for

comparison with active stiffness measured as a function of

frequency.

The dissipative component of the stiffness, fitted linearly, gives

a value consistent with the dissipation from hydrodynamic drag

of two beads at the experimental center-to-center distance, in

a liquid of viscosity slightly larger than water. It is difficult to

discuss this result more quantitatively because the hydrodynamic

interaction in the presence of the cell is not modeled simply. An

interesting observation is that the dissipation is small; this is in

contrast to the large dissipation observed for active and big

elongations in our previous work,7 reinforcing the conclusion

that additional dissipative processes are at work when the cell is

deformed actively. These are processes (e.g. stress-induced

rupture or protein un-folding) which do not contribute to the

spontaneous motion of the membrane.

3.2 Relaxation

Stress-relaxation experiments are performed by displacing just

one bead by rapidly moving one laser trap (within 50 ms) to

a position between 0.5 mm and 2.0 mm from the rest position. This

corresponds to straining the cell by a Dstrain jump in the range
Fig. 3 Extracting the system susceptibility from thermal fluctuation, and

using the Kramers–Kronig relation as shown in the text, it is possible to

extract the complex stiffness as a function of frequency: K*(u). The data

show an elastic stiffness for u < 100 rad s�1, and a predominantly dissi-

pative stiffness for higher frequencies. Markers correspond to a cell at

rest (;) and at maximum strain 0.26 (:). As usual, solid markers

indicate the real component, and open markers the imaginary compo-

nent. The ‘‘apparent’’ stiffness due to water is shown by (B): it is

exclusively dissipative, and arises from the hydrodynamic interaction of

the two colloidal particles.

2048 | Soft Matter, 2011, 7, 2042–2051
0.04 to 0.14. A larger displacement is also explored (Dstrain ¼
0.25, moving the laser trap by 3.5 mm), but with a slower jump

(time to move laser trap of 20 ms). The stress relaxation is

measured starting from an appropriate first time-point, to reflect

the time taken in straining the cell, as shown in the data of Fig. 4.

The stress relaxation is recorded for 30 s at �240 frames/s. Then

the traps are returned to the rest position, and the same cell is

stretched again after waiting typically 10 s. A typical experiment

trace is shown in Fig. 4 (b).

As in previous work7 the time-dependent stiffness of the RBC

is defined as K(t)¼ F(t)/(L0 + DL(t)). The total set of experiments

is fitted very well by the following 3-parameter power-law

function:

K(t) ¼ KN + DK(t) ¼ KN + DK0(t/t0)�a, (20)

where t0 ¼ 1s is fixed for a dimensionless time. The relaxation

experiments have been carried out on 8 different cells, and the

time dependent component DK(t) is plotted in Fig. 4 (a). The

success of eqn (20) highlights that the time-dependent compo-

nent of the stiffness decays as a power law. Within the experi-

mental resolution, a plateau value is reached in around 30 s.

To study the effect of prestress, cells are stretched to

Dstrain prestress¼ 0.125. After waiting 30 s a further rapid strain is

applied, and stress-relaxation is observed as described above.

The same cell is stretched repeatedly, as illustrated in Fig. 4 (b).

Changing the amplitude of the step strain when straining from

the rest position does not affect the exponent a of the power-law

relaxation. Values are between 0.50 < a < 0.63. However, the

stress-relaxation from a prestress condition leads to a slightly

lower exponent 0.38 < a < 0.42. Without prestress, the power law

exponent values are quite similar to previous work where, under

slightly lager strains, values of a ¼ 0.75 were measured for fresh

cells, and a ¼ 0.82 measured for cells aged 1 day in glucose-

starved conditions.7 The value of 0.64 was measured by another

group.55

Cell cytoskeletal networks are well known to be highly

nonlinear, with an elastic modulus that depends sensitively on

applied stress.2 The experiments on the RBC show that a relax-

ation from small strain is similar to that obtained in the largest

strain currently accessible with our system. The lower exponent

value in the prestressed state could be evidence that prestress

induces a change in the cell structure, a kinematic hardening. The

kinematic hardening may result from a rearrangement of the

spectrin network, by local restructuring through breaking and

reforming the mesh structure of the spectrin network.56 In

previous work7 by comparing the stress relaxation with stress-

strain measurements and by measuring the energy dissipated on

deformation, we also concluded that deformation was causing

a structural change in the cell.
3.3 Stress–strain measurements

The modulus of the cell can be obtained from measuring the

force necessary to pull the cell, as a function of the strain. In

the absence of dissipation (e.g. for a very slow deformation) the

gradient of the force versus strain data is the elastic component of

the cell stiffness. For finite deformation rates, it is more signifi-

cant to perform an oscillatory strain, and to obtain the in-phase
This journal is ª The Royal Society of Chemistry 2011
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Fig. 4 The decay of the measured time-dependent part of the cell stiffness k(t) as a function of time can be fit with a power law, obtaining the exponent

a. Panel (a) shows the data traces for a number of cells. The solid lines are power-law fits to individual experiments, showing the degree of noise

characteristic of these experiments. (b) Typical time-course of an experiment run, showing force versus time. Two traces are shown, illustrating step

strain from rest and from a pre-stressed condition. Force relaxation is measured for 30 s, with 10 s resting intervals. (c) The values of exponent

a measured from this data, as a function of the strain step. The markers indicate (	) cells initially at the rest length and (:) cells under pre-stress. The step

strain amplitude does not change the value of the exponent a, but the prestress state is important, reducing the observed power exponent.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
am

br
id

ge
 o

n 
28

 M
ar

ch
 2

01
1

Pu
bl

is
he

d 
on

 2
2 

D
ec

em
be

r 
20

10
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0S

M
01

11
7G

View Online
and out-of-phase components of the response, which are

proportional to the elastic and dissipative components of the

stiffness.57 Small deformations (strain amplitude 0.02) are per-

formed at initial strains of 0, 0.13 and 0.25, and large deforma-

tions (amplitude 0.13) are performed at initial strains of 0 and

0.13. Laser trap displacement speeds are 20, 5, 1 and 0.2 mm/s.

Fig. 5, panels (a)�(d) show the force versus applied strain, for

different deformation speeds. With the smaller deformation

compared to previous work,7 the data have too much noise to

back out both phase and amplitude. Therefore the force–strain

data is fitted linearly, measuring the quantity |K*|.

As the strain amplitude increases, the cell stiffness |K*| also

increases, and begins to saturate at around strain 0.20. For the

lower speeds of displacement, the stiffness at small amplitudes is

smaller than the stiffness at large amplitudes. Stiffening with
Fig. 5 The deformation speed has a strong effect on the measured cell stiffn

measured force (top) and stiffness (bottom) derived from it are plotted versus t

mm s�1, (c) 5 mm s�1 and (d) 20 mm/s. The force versus strain data is fitted line

markers) strain amplitudes are explored: The symbols (	) indicate stiffness fr

of 1.75 mm), while (O) derive from small oscillations of around 2% amplitude (

of 0.13 have been done for two additional amplitudes: 4% and 7% (not shown

Fig. 6.

This journal is ª The Royal Society of Chemistry 2011
increasing deformation rate is very clear in Fig. 6, and extends

the previous results of ref. 7 to a wide strain amplitude range.

This is a simple but physiologically important aspect of RBC

mechanics.

Considering in greater detail the stiffness dependence on

amplitude and rate in Fig. 6, it can be seen that: (1) at rest length

there is a stronger frequency dependence compared to pre-

strained conditions; (2) pre-strain affects the lower frequencies

more than the high frequency; (3) at the high frequencies, u T

10 rad s�1, |K*| is independent of deformation amplitude,

whereas at low frequencies there is significant strain stiffening.

These points are consistent with the rheological frequency-

dependence obtained from fluctuations, shown in Fig. 3: At rest

and at low pre-strain, the cell response is dominated by the elastic

branch of K0 at low frequencies, crossing over to a dissipative
ess. The measured stiffness also increases if the cell is pre-strained. The

he strain of the cell, for different deformation speeds: (a) 0.2 mm s�1, (b) 1

arly (solid lines) to obtain |K*|. Both small (blue markers) and large (red

om large oscillations (around 0.13 strain amplitude; laser displacements

laser trap moves of 0.25 mm). Further measurements around the pre-strain

in figure). All the stiffness values are plotted as a function of frequency in

Soft Matter, 2011, 7, 2042–2051 | 2049
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Fig. 6 The stiffness |K*| measured with active deformation shows

a strong dependence on the strain of the cell and on the amplitude of

deformation, and a weak trend with frequency. Different stiffness as the

deformation amplitude is changed is a signature of non-linear elasticity.

Different markers indicate the amplitude of driven deformations: (:) is

7%, (	) is 4% and (;) is 2%. While for a given strain amplitude there is

only a very slight stiffening with frequency, there is a marked softening on

reducing the amplitude of deformation. The (+) markers indicate the

values of stiffness K0 obtained by processing the fluctuation data as

described in the text. These have been plotted at u¼ 100 rad s�1, although

as is shown in Fig. 3 this is a constant value in the range 20 < u (rad s�1) <

200. The bead fluctuations can be considered as the smallest possible

amplitude. The stiffness measured by fluctuation of the beads, for cells at

rest or at small strain (15%), is smaller than that measured from actively

driving cell oscillations. For large strains the two methods converge.
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branch around u x 200 rad s�1; the K0 value increases with cell

strain, whereas the K00 remains the same. The data of Fig. 6

shows this behavior, with the increase of |K*| with u for the cell at

rest, and the increase of the low-u range of |K*| as the cell is

stretched. These results, separating out the effect of amplitude

and deformation frequency, clearly characterize the nonlinearity

of cell mechanical response.

The K0 values obtained from fluctuations are plotted in Fig. 6

and show that for the cell at rest or pre-strained by 15% there is

already a small difference between the infinitesimal strain

motion, and the 2% oscillations. This small difference seems

consistent with a ‘‘leveling-off’’ of K to a finite value at zero

amplitude oscillation. In other words, there is no evidence in the

data of Fig. 6 to suggest significant non-thermal sources of

motion, which would result in an apparent K from fluctuations
2050 | Soft Matter, 2011, 7, 2042–2051
much smaller than the |K*| from active motion. This statement

can only be made here for the frequency range 10 < u (rad s�1) <

200 (1.6 < f (Hz) < 32) probed in the fluctuation experiment. It

leaves open the possibility of non-thermal sources at lower

frequency: indeed Betz et al. 8 measured non-thermal motion in

the range 0.1 < u (Hz) < 10, with the strongest non-thermal

activity at 1Hz. It should be noted that the cells considered here

gave rise to a spread of K0 values at rest: In Fig. 6 the data from

one cell at rest shows a K0 x 20 pN mm�1, whereas of the 15 cells

considered the average and standard deviation at rest are K0 x
(9 � 7)pN mm�1. This large spread appears due to differences

between cells. This data is consistent with the absence of non-

thermal noise, but the error bars are such that non-thermal noise

cannot conclusively be ruled out.

The occurrence of non-linearity at such small strains, smaller

than for in vitro reconstituted networks, may be a consequence of

the state of tension in the spectrin network. We have previously

put forward in ref. 7 the idea that the cytoskeleton non-linearity

is a consequence of stress-induced rupturing or re-modeling of

the network. This type of effect would give rise to mechanical

behavior consistent with the soft glassy rheology (SGR) model.

The SGR model is a conceptual model describing the response of

material capable of flowing only under the action of external

forces,58 and has been applied successfully to cell mechanics59 and

in vitro reconstructed cytoskeleton models.60 The success of the

model appears linked to the fact that the components of the

cytoskeleton responsible for the elasticity are mechanically

fragile, a condition with strong analogies to a wormlike chain

solution.61 In the RBC, proteins that bind the spectrin filaments

to the membrane are known to dissociate by consumption of

ATP, allowing the cell to change shape: These are transient

bonds, under physiological conditions.62 It is therefore not

unreasonable to assume that external stress facilitates this

process of rupture of the most fragile bonds, with formation of

new bonds; the newly formed bond would carry (on average) less

force than before rupture. The fact that the cell has a long-time

elastic modulus implies that only a fraction of the bonds can

break. In this case a prestress leads to a state with residual stress,

carried by the permanent bonds, with the transient bonds playing

a negligible role. This is consistent with the observation that for

a large pre-strain (of 25%) the difference of measured modulus

with differential amplitude vanishes. This picture with two types

of bond (transient and permanent) also explains why the RBC

does not go into a ‘‘fluidised’’ low modulus state as in ref. 59 upon

deformation. A simulation such as carried out in ref. 63, where

rupture events are included, seems relevant and could be

extended to include a fraction of permanent bonds.
4 Conclusions

In summary, we have studied the mechanical properties of red

blood cells by monitoring the motion and forces acting on two

optically trapped probe beads attached uni-axially. Different

deformation protocols have been performed, aiming to elucidate

the limit of linear response. Careful consideration has been given

to the characteristics of the spontaneous fluctuations, comparing

the power law seen in experiments with values calculated from

the theory of membrane deformation. The exponent observed

experimentally changes as the cell is stretched, consistent with the
This journal is ª The Royal Society of Chemistry 2011
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idea of an increasing membrane tension. For the cell at equilib-

rium, there is evidence of hydrodynamic interactions between the

opposite planes of the RBC. The experiments reported here also

allow us to compare the response of the cell over a carefully

controlled range of deformation amplitude. It has been shown

that the cell stiffness changes already for very small strains, of the

order of a few percent. Previous results in the literature had

reported non-linearity, but only at larger strains where geometric

effects would also be important.

Finally, the comparison of the intrinsic cell susceptibility with

the response under external forces has indicated that non-

thermal effects are not required to explain the results from these

experiments. However given the experimental uncertainty non-

thermal noise as in Betz et al. 8 cannot be ruled out. Future

experiments should be aimed at extending these results to a lower

frequency range and in reducing the experimental error, to

confirm or exclude directly the presence of non-thermal effects.
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